

Astro Clare Technology © Flint, MI EST 2022

“ HELLO CODER “

We at Astro Clare Technology are proud to have you receive this book! There will be
many fun activities for you to enjoy. If you are a parent purchasing this book for your

child to venture into they great world of becoming an software engineer, we thank you
for trusting us ! We have many great activities for you and your child to enjoy together.

Our main objective is to get individuals to begin their journey in coding, programming
and computing technologies. We see the lack of resources decline over the years and
understand that purchasing these courses at Universities are even more challenging
financially and timely. So we will due more than just “teach” you how to become the

greatest engineer!

You are going to learn many skills such as: critical thinking, logical outlooks, problem
solving skills, discipline and career ready structure and even more !

Each successful assessment from you will grant an Certificate from Astro Clare

Technology along with an PDF of your course completion to show your next employer.

Once again, we thank you for trusting in Astro Clare Technology and hope you put your
best code forward.

 Clarence Scott
CEO & Founder

Overview
By the end of this book, you should be have a solid foundation in JavaScript, to build interactive

and dynamic web pages. The book is to provided theoretical understanding and practical skills through

hands on exercises and a mini project.

Our Main Goals:

1. Understanding JavaScript’s Role and History

• Gain an overview of JavaScript's significance in web development.

• Understand the historical context and evolution of the JavaScript

language.

2. Setting up Development Environment

• Learn how to integrate JavaScript into HTML documents.

• Acquire skills for using the browser console effectively for debugging.

3. Mastering Basic JavaScript Concepts

• Understand the fundamentals of variables and data types.

• Explore various operators and expressions for manipulating data.

4. Implementing Control Flow and Loops

• Learn to implement conditional statements for decision-making.

• Understand how to use loops (for and while) for repetitive tasks.

5. Building and Using Functions

• Master the concept of functions, both using the function keyword and

arrow functions.

• Understand the use of parameters and return values in functions.

6. Manipulating Arrays and Objects

• Learn to create and manipulate arrays.

• Understand the basics of defining and working with objects.

7. DOM Manipulation and Event Handling

• Understand the structure of the Document Object Model (DOM).

• Learn to select and manipulate HTML elements using JavaScript.

• Acquire skills in handling user interactions and responding to browser

events.

8. Asynchronous JavaScript

• Get an overview of asynchronous operations in JavaScript.

• Learn about AJAX and the Fetch API for making asynchronous requests to

a server.

9. Error Handling and Debugging

• Understand the importance of error handling in JavaScript.

• Learn to use try-catch blocks for graceful error handling.

• Develop strategies for debugging JavaScript code effectively.

10. Appy Knowledge in a Mini Project

• Combine learned concepts to build a small interactive webpage.

• Integrate HTML, CSS, and JavaScript to create a cohesive project.

11. Next Steps and Resources

• Get introduced to advanced JavaScript concepts (closures, prototypes,

ES6+ features).

• Explore additional resources for continuous learning and development.

Course Modules

Module 1: Getting Started with JavaScript

• Lesson 1: Introduction to JavaScript

• Overview of JavaScript's role in web development.

• Brief history and evolution of JavaScript.

• Lesson 2: Setting Up Your Environment

• Integrating JavaScript into HTML documents.

• Understanding the browser console for debugging.

Module 2: Basic JavaScript Concepts

• Lesson 3: Variables and Data Types

• Declaring and using variables.

• Understanding basic data types: strings, numbers, booleans.

• Lesson 4: Operators and Expressions

• Exploring arithmetic, assignment, comparison, logical, and ternary

operators.

Module 3: Control Flow and Loops

• Lesson 5: Conditional Statements (if, else if, else)

• Implementing conditional logic for decision-making.

• Lesson 6: Loops (for and while)

• Iterating through data with loops for repetitive tasks.

Module 4: Functions

• Lesson 7: Introduction to Functions

• Defining functions with the function keyword and arrow functions.

• Understanding parameters and return values.

• Lesson 8: Function Applications

• Implementing functions to solve common problems.

• Function expressions and anonymous functions.

Module 5: Working with Arrays and Objects

• Lesson 9: Arrays

• Creating and manipulating arrays.

• Accessing array elements and using array methods.

• Lesson 10: Objects

• Defining and working with objects.

• Accessing object properties and methods.

Module 6: Document Object Model (DOM) Manipulation

• Lesson 11: Introduction to DOM

• Understanding the DOM structure.

• Selecting and manipulating HTML elements using JavaScript.

• Lesson 12: Events

• Handling user interactions and responding to browser events.

Module 7: Asynchronous JavaScript

• Lesson 13: Introduction to Asynchronous Programming

• Overview of asynchronous operations in JavaScript.

• Introduction to AJAX and Fetch API.

• Lesson 14: Fetching Data

• Making asynchronous requests to a server using Fetch.

• Handling responses and updating the DOM dynamically.

Module 8: Error Handling and Debugging

• Lesson 15: Error Handling

• Using try-catch blocks to handle errors gracefully.

• Strategies for debugging JavaScript code.

Module 9: Putting It All Together - Mini Project

• Lesson 16: Building a Simple Interactive Web Page

• Apply the learned concepts to create a small interactive webpage.

• Combining HTML, CSS, and JavaScript.

Module 10: Next Steps and Resources

• Lesson 17: Advanced JavaScript Concepts

• Brief overview of advanced topics (closures, prototypes, ES6+ features).

• Resources for further learning and exploration.

This course is designed to provide a structured introduction to JavaScript for web

development, covering fundamental concepts and practical applications. Each lesson

should include hands-on exercises to reinforce learning, and the mini project in Module

9 serves as a practical application of the concepts covered in the course.

Getting Started With JavaScript

1.Introduction to JavaScript

JavaScript is a high-level, versatile programming language primarily used for the interactivity and

dynamic behavior of websites. It is a crucial component of web development alongside HTML and CSS. If

you haven’t read our HTML and CSS books we encourage you to do so in order to have a full

fundamental understanding of all 3 at the end of this book! Javascript enables you to create client-side

scripts that run in web browsers. This could be for real-time updates, user interactions, and manipulation

of web content.

Key points we want to cover are:

- Understanding Javascript’s role in web development

- Recognizing the importance of JavaScript in creating dynamic and interactive

web pages.

Brief History and Evolution of JavaScript:

• Netscape Origins: JavaScript was initially developed by Brendan Eich at Netscape in 1995

• ECMAScript Standards: The language’s standard is managed by ECMA International, and

the ECMASCript specification defines the scripting language. JavaScript is used as a

synonym for ECMAScript.

• Browser Adoption: JavaScript gained popularity with browser support from Netscape

and later Internet Explorer, becoming a fundamental technology tool for web

developers.

• Moder JavaScript: The language has evolved significantly, introducing new features and

enhancements, especially with the ECMASCript 6 and subsequent versions.

2. Setting up Your Environment

Integrating JavaScript into HTML Documents:

To use JavaScript in web development, it needs to be integrated into HTML Documents. This

integration can happen in multiple ways:

• Inline Scripting: Writing JavaScript directly within HTML using the <script> tag.

• External Files: Creating separate JavaScript files with the (.js) extension and linking them

in HTML. This will constitute in creating a new document with the .js extension at then

end.

’

Understanding the browser console for debugging:

 The browser console is a crucial tool for developer to debug and test JavaScript code. It provides

a command-line interface for interacting the browser and inspecting the state of the webpage.

Developers can log messages, errors, and inspect variables in real-time.

 Common console commands include:

- Console.log(): Output messages to the console

- Console.error(): Log error messages

- Console.earn(): Log warning messages

- Console.clear(): Clear the console

Basic JavaScript Concepts

3. Variables and Data Types
• Variable Declaration:

o Variables are containers for storing data values

o In JavaScript, you can declare variables using ‘var’, ‘let’, or ‘const’

In order to see the console log of this code right click on your live server tab in your

browser and click ‘inspect’ you should then see the option “console” at the top of the

inspect window. Click console and you should see the following.

• Variable Assignment and Usage:

o Assign values to variables using the ‘=’ operator.

o Variables can hold various data types, such as strings, numbers, Booleans, objects, and

more.

Result:

• Strings

o Represented by sequences of characters enclosed in single or double quotes

o Used for text and can include alphanumeric characters, symbols and spaces.

• Numbers

o Represent numeric values, either integers or floating-point numbers

o Used for arithmetic operations

• Booleans

o Represent true or false values

o Used in conditional statements and logical operations

4. Operators and Expressions
• Arithmetic Operators

o Used for mathematical calculations

Addition (+); Subtraction (-); Multiplication (*); Division(/); Floor Division (remainder – (%))

• Assignment Operators

o Assign values to variables

• Comparison Operators

o Compare values and return boolean results

• Logical Operators

o Combine multiple boolean values or expressions

Control Flow and Loops

5. Conditional Statements (if, else if, else)
• If Statement

o The ‘if’ statement is used to execute a block of code if a specified condition is true.

• Else if Statement

o The ‘else if’ statement allows you to check multiple conditions in sequence

• Else Statement

o The ‘else’ statement is used to execute a block of code if none of the conditions is

true.

• Nested Conditional Statements

o You can nest the above statements within each other for more complex conditions

6. Loops (for and while)
Iterating through data with loops for repetitive tasks

• For Loop

o The ‘for’ loop is used when the number of iterations is known

• While Loop

o The ‘while’ loop is used when the number of iterations is unknown, and it depends

on a condition

• Do-while Loop

o The ‘do-while’ loop is similar to the ‘while’ loop but, the block of code is excuted at

least once, even if the condition proves false.

6.1 Loop Control Statements

• Break Statement

o Terminates the loop prematurely

• Continue Statement

o Skips the rest of the code inside of the loop for the current iteration and moves to the

next iteration.

Functions

7. Introduction to Functions
Defining functions with the ‘function’ keyword and arrow functions:

• Function Declaration:

o Functions are reusable blocks of code that perform a specific task

o You can define functions using the ‘function’ keyword followed by the function name

and parameters (if any).

• Arrow Functions (ES6)

o Arrow functions provide a more concise syntax for defining functions.

o They are especially useful for anonymous functions and short, single-expression

functions.

 Understanding parameters and return values:

• Parameters

o Parameters are placeholders for values that a function can accept.

o They are specified in the function declaration and used within the function body.

• Return Values

o Functions can return values using the ‘return’ keyowrd.

o The returned value can be used in other parts of the code.

8. Function Applications
Implementing functions to solve common problems

• Calculate the area of a rectangle

o Functions can encapsulate logic to solve specific problems

• Checking to see if a number is Even

o Functions can perform checks and return boolean values. In this example we are

using the modulus operator to find the remainder of number divided by 2. If the

remainder is 0, then the number is divisible by 2, indicating an even number.

Function expressions and anonymous functions

• Functions can be assigned to variables as values

• const greet = function(name) {

• console.log("Hello, " + name + "!");

• };

• // Here we are assigning the function(name)…. To the variable greet
This allows us to always use greet() globally in our projects.

• Functions without a name are called anonymous functions

• var square = function(x) {

• return x * x;

• };

•

• var result = square(5);

• console.log(result);
The function does not have a name specified after the ‘function’ keyword. Instead, it’s assigned

to the variable square. This is what makes the function anonymous.

Working with Arrays and Objects

9. Arrays
Creating and Manipulating Arrays

• Array Declaration

o Arrays are ordered collections of values, which can be of any data type.

o You create arrays by enclosing comma-separated values within brackets ‘[]’.

• Array Manipulation

o Arrays have methods for adding, removing, and modifying values or elements.

type.push()

type.pop()

colors[#]

When counting in arrays remember they start from 0, then proceed with 1, 2, 3….

9. Arrays (cont.)
• Accessing Elements

o You can access individual elements in an array using square brackets ‘[]’ and the

index of the element (starting from 0).

 3

• Array Methods

o JavaScript provides built-in methods for performing common operations on arrays,

such as: push, pop,shift,unshift,splice,slice,concat,indexOf,forEach and even more !

Take time to study these even more. (Use the “Array Methods” PDF attached in

download for reference).

10. Objects
Define and work with objects

• Object Declaration

o Objects are collections of key-value pairs where keys are strings (or symbols) and

values can be of any data type.

o You can create objects using curly braces ‘{}’ and specifying key-value pairs.

• Working with object properties

o You can access object properties using dot notation, (object.property) or bracket

notation (object[‘property’]).

Accessing object properties and methods

• Accessing properties

o Objects can contain properties (variables) and methods (functions).

Document Object Model (DOM) Manipulation

11. Intro To DOM
Understanding the DOM Structure

• What is the DOM?

o The Document Object Model (DOM) is a programming interface for web documents. It

represents the structure of HTML and XML documents as a tree like structure where

each node represents an element (ex., ‘<div>’, ‘<p>’) or other document components.

• DOM Tree

o The DOM tree consists of nodes such as elements, attributes, and text nodes.

o Elements are nested within each other to represent the hierarchical structure of the

HTML document.

• Node Types

o There are different types of nodes in the DOM, including element nodes, text nodes,

attribute nodes and more.

Selecting and manipulating HTML elements using JavaScript

• Selecting Elements

o JavaScript provides methods to select HTML elements from the DOM, such as:

‘getElementById’, ‘getElementByClassName’, ‘getElementByTagName’, ‘querySelector’,

and ‘querySelectorAll’.

• Manipulating Elements

o Once selected, you can manipulate HTML elements by changing their attributes, styles,

content and even adding or removing elements dynamically using JavaScript!

12. Events
Handling user interactions and responding to browser events

• What are events?

o Events are actions or occurrences that happens in the browser, triggered by user actions

such as: clicking or hovering. Or by the browser itself: page load, resizing etc..

• Event handling

o JavaScript allows you to register event handlers to respond to these events. You can

attach event listeners to HTML elements, specifying the type of event to listen for and

the function to execute when the event occurs.

• Common events

o Click, mouseover, keydown, submit, load, resize etc.

Asynchronous JavaScript

13. Introduction to Asynchronous Programming
Overview of Asynchronous Operations in JavaScript

• Synchronous vs. Asynchronous

o Synchronous operations are executed sequentially, one after another, blocking the

execution until each operation completes.

o Asynchronous operations, on the other hand, allow the program to continue

executing other tasks while waiting for certain operations to complete.

• Common Asynchronous operations

o In JavaScript common asynchronous operations include fetching data from a server,

reading files, timers (timeout errors), and handling interactions (click or scroll events

etc.)

 Introduction to AJAX and Fetch API

• AJAX (Asynchronous JavaScript and XML)

o AJAX is a technique used to make asynchronous HTTP requests from the browser to

the server without reloading the entire page.

o It enables dynamic updates of webpage content without interrupting the user

experience.

• Fetch API

o The Fetch API is a moder replacement for XMLHttpRequest (XHR) for making

network requests in the browser.

o It provides a more powerful and flexible interface for fetching resources

asynchronously from the server.

What we are doing in the example above: Fetching a network request to a specific URL, once the

response is received we then parse the response as JSON. This returns the JSON data through a promise.

Afterwards we are logging the data to the console. Finally we catch the error if there are any and log it

the console.

14. Fetching Data
Making Asynchronous requests to a server using fetch

• Fetching data with fetch API

o Use the Fetch API to make HTTP request Asynchronously to a server and retrieve

data.

o Fetch supports various HTTP methods such as GET, POST, PUT, DELETE, etc.

 Handling responses and updating the DOM dynamically

• Parsing and processing response

o Once data is fetched, parse the response(as JSON) and process the data accordingly .

• Updating the DOM Dynamically

o Use the retrieved data to update the webpage dynamically by manipulating the

DOM elements.

o This could involve displaying data in tables, lists, or updating specific parts of the

webpage based on the fetched data.

What we are doing here is telling our JavaScript to look for an HTML file containing the div

element with the ID ‘content’. In the script, the fetch code is used to retrieve data from the API

end point (‘https://api.example.com/data’). The fetched data is parsed as JSON using

‘.then(response => response.json())’. Once the data is successfully fetched and parsed, it’s used

to update the content of the div element with the ID ‘content’ using

‘document.getElementById(‘content’).textContent = data.message;’. If there is any errrorduring

the fetch request or JSON parsing it’s caught and logged using the console with ‘.catch(error =>

console.error(‘Error:’ , error));’.

Error Handling and Debugging

15. Error Handling
Using try-catch blocks to handle errors gracefully

• Try-catch block

o In JavaScript, the ‘try’ statement allows you to define a block of code to be tested

for errors

o The ‘catch’ statement allows you to define a block of code to be executed if an error

occurs in the ‘try’ block.

• Console Logging

o Use: console.log(), console.error(), console.warn() etc. to log messages and values to

the browser console for debugging purposes.

• Browser DevTools

o Modern web browsers come with built-in developer tools that provide powerful

debugging capabilities.

o DevTools allow you to inspect HTML, CSS and JavaScript, set breakpoints, step

through execution of code, look at network requests and even more!

• Debugger Statement

o Insert the ‘debugger;’ statement in your code to pause execution and lauch the

browsers debugger when reached.

• Source Maps

o If you’re working with minified or transpiled code (TypeScript or Babel), use source

maps to map the generated code back to the original source files, making debugging

easier.

• Code Linting

o Use code linters (ESLint) to enforce coding standards, catch errors, and identify

potential issues in your JavaScript code.

• Unit Test

o Write unit tests for your code to ensure that individual units (functions, modules)

work correctly. Unit tests help catch errors early in the development process.

• Code Review

o Conduct code reviews with peers to catch errors, share knowledge, and improve

code quality.

• Error monitoring and Logging

o Implement error monitoring and logging tools (Sentry, LogRocket) in your

applications to track and log errors that occur in production environments.

Putting It All Together – Mini Project

16. Building a Simple Interactive Web Page
Apply the learned concepts to create a small interactive web page

• Concept Application

o In this lesson you will apply the concepts learned throughout the course to create a

small interactive webpage.

o This involves combining HTML for structure, CSS for styling and JavaScript for

interactivity.

• Interactive Elements

o Incorporate interactive elements such as buttons, forms, input fields, dropdown

menus, or any other user interface components that respond to user actions.

• Dynamic Content

o Use JavaScript to dynamically update the content of the webpage based on user

input or interactions.

o This could include fetching data from an external API, updating the DOM

dynamically or handling user events.

Combining HTML, CSS, and JavaScript

• HTML for structure

o Use HTML to define the structure and content of the web page, including elements

such as headings, paragraphs, lists, images, and interactive elements.

• CSS for styling

o Apply CSS styles to enhance the visual appearance of the web page, including layout,

colors, fonts, spacing, and responsiveness.

o Use CSS selectors to target specific HTML elements and apply styles accordingly.

• JavaScript for interactivity

o Use JavaScript to add interactivity and behavior to the web page.

o This could involve responding to user events (clicks, keypresses), manipulating the

DOM dynamically, validating form inputs, or performing calculations.

The documents you need are all in the webpage zip file provided in the download. If you the file did not

properly download please email astroclaretechnology@gmail.com with details and order number.

mailto:astroclaretechnology@gmail.com

Next Steps and Resources

17. Advanced JavaScript Concepts
Brief Overview of Advanced Topics

• Closures

o Closures are an important and powerful concept in JavaScript.

o They occur when a function is defined within another function and has access to the

outer function’s variables, even after the outer function has finished executing.

o Closures are commonly used to create private variables and encapsulate

functionality.

• Prototypes and prototypal inheritance

o JavaScript is prototype-based language, where objects can inherit properties and

methods from other objects.

o Every JavaScript object has a prototype, which is another object that it inherits

properties and methods from.

o Understanding prototypes is crucial for leveraging inheritance and creating efficient

object-oriented code in JavaScript.

• ES6 + Features

o ES6 (ECMAScript 2015) introduced many new features and enhancements to

JavaScript, making the language more expressive and powerful.

o Some notable ES6+ features include arrow functions, template literals, destructuring

assignments, classes, promises, async/await, and more.

o Familiarity with these features allows developers to write cleaner, more concise, and

maintainable code.

Resources for further learning

• Online Courses

o Udemy: Offers various JavaScript courses covering beginner to advanced topics,

including ES6 features, frameworks, and libraries.

o Coursera: Provides courses from top universities and institutions, such as “JavaScript

Algorithms and Data Structures” and “Full-Stack Web Development with React”

o freeCodeCamp: Offers a free online curriculum covering JavaScript, algorithms, data

structures, and web development projects.

• Community and Forums: Join the Discord attached to the download for this book. Creating

an Stack Overflow account will help as well. Stack Overflow is a popular Q&A platform for

developers. It offers a wealth of knowledge.

• Practice and Projects

o GitHub: Explore open-source projects, contribute to other people’s code and build

your own portfolio !

o CodePen & LeetCode: Experiment with code snippets, collaborate and practice

challenges with CodePen and LeetCode. Both will help improve your coding problem

solving skills.

Thank You for Choosing Astro Clare Technology!

At Astro Clare Technology, we express our gratitude for choosing to embark on

this coding journey with us! Whether you're a dedicated learner or a parent nurturing

the next software engineer, your trust means the world to us.

Our mission extends beyond teaching coding skills. We aim to cultivate critical

thinking, logical outlooks, problem-solving skills, discipline, and career-ready structures.

The evolving landscape of technology should be accessible to all, and we're here to

make that happen.

As you progress through the activities, each successful assessment earns you a

certificate from Astro Clare Technology, a testament to your accomplishments. Your

journey is not just about learning to code; it's about becoming the greatest engineer

you can be.

Logging JavaScript - Outro

Lesson 1: Introduction to JavaScript

Overview:

JavaScript is a dynamic, high-level programming language primarily used for client-side

web development. It enables interactive and dynamic content on web pages by

manipulating HTML and CSS, and interacting with the Document Object Model (DOM).

JavaScript has evolved significantly since its creation in the mid-1990s and has become a

fundamental technology in modern web development.

Lesson 2: Setting Up Your Environment

Integrating JavaScript:

JavaScript can be integrated into HTML documents using <script> tags, either inline or

as external files. The browser console is a powerful tool for debugging JavaScript code,

allowing developers to log messages, inspect variables, and troubleshoot issues.

Module 2: Basic JavaScript Concepts

Lesson 3: Variables and Data Types

Variables in JavaScript are containers for storing data, and data types include strings,

numbers, booleans, and more complex types like arrays and objects.

Lesson 4: Operators and Expressions

JavaScript supports various operators for performing arithmetic, assignment,

comparison, logical, and ternary operations.

Module 3: Control Flow and Loops

Lesson 5: Conditional Statements (if, else if, else)

Conditional statements like if, else if, and else are used for decision-making based on

certain conditions.

Lesson 6: Loops (for and while)

Loops like for and while are used for iterating over data to perform repetitive tasks.

Module 4: Functions

Lesson 7: Introduction to Functions

Functions in JavaScript encapsulate reusable blocks of code and can be defined using

the function keyword or arrow functions.

Lesson 8: Function Applications

Functions can solve common problems, accept parameters, and return values. They can

also be defined as function expressions or anonymous functions.

Module 5: Working with Arrays and Objects

Lesson 9: Arrays

Arrays are ordered collections of data that can be manipulated and accessed using

various methods.

Lesson 10: Objects

Objects are collections of key-value pairs, allowing for structured data storage and

manipulation.

Module 6: Document Object Model (DOM) Manipulation

Lesson 11: Introduction to DOM

The DOM represents the structure of HTML documents as a tree-like structure, and

JavaScript can be used to select and manipulate HTML elements dynamically.

Lesson 12: Events

JavaScript can respond to user interactions and browser events by attaching event

listeners to HTML elements.

Module 7: Asynchronous JavaScript

Lesson 13: Introduction to Asynchronous Programming

Asynchronous operations in JavaScript allow for non-blocking execution, enabling tasks

like fetching data from servers using AJAX or the Fetch API.

Lesson 14: Fetching Data

Data can be fetched asynchronously from servers using the Fetch API, and the DOM can

be updated dynamically based on the fetched data.

Module 8: Error Handling and Debugging

Lesson 15: Error Handling

Try-catch blocks in JavaScript allow for graceful error handling, and various debugging

strategies like console logging and browser DevTools can be used to debug JavaScript

code.

Module 9: Putting It All Together - Mini Project

Lesson 16: Building a Simple Interactive Web Page

A simple interactive web page can be built by combining HTML for structure, CSS for

styling, and JavaScript for interactivity. Examples include greeting messages based on

user input.

Module 10: Next Steps and Resources

Lesson 17: Advanced JavaScript Concepts

Advanced JavaScript topics include closures, prototypes, and ES6+ features, which

provide powerful capabilities for writing efficient and maintainable code.

Resources for Further Learning and Exploration

Further learning resources include books, online courses, documentation, community

forums, practice platforms, and projects, which help developers deepen their

understanding and skills in JavaScript.

Your Journey, Your Achievement
Completing this book marks a significant milestone in your coding journey. Your commitment to

learning and growing is commendable. As you showcase your best code forward, know that Astro Clare

Technology is proud to be a part of your success.

Clarence Scott,

CEO & Founder

Astro Clare Technology

